BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 52 (12), 3749—3750 (1979)

Synthesis of a Few Derivatives of Cycloiridated 2-(2-Thienyl)pyridine

Matsuo Nonoyama

Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464 (Received March 27, 1979)

Synopsis. A few derivatives of cycloiridated 2-(2-thien-yl)pyridine were prepared and characterized by infrared and ¹H NMR spectra.

Numerous cyclometallation reactions of benzene derivatives with transition metal compounds have been reported,^{1,2)} but only a few cases are known of cyclopalladation and cycloplatination of thiophene derivatives.^{3,4)} Since various chemical properties of thiophene are similar to those of benzene, cyclometallation reactions found for benzene derivatives might occur also for thiophene derivatives. We have studied reactions of 2-(2-thienyl)pyridine with some platinum-metal halides and found the first example of cycloiridation of the thiophene ring. The results are reported in this paper.

2-(2-Thienyl)pyridine (abbreviated as H(2-thpy)) reacted with hydrated iridium(III) chloride in boiling 2-methoxyethanol to give an orange complex, [{IrCl(2-thpy)₂}₂]. The complex reacted easily with unidentate ligand (L) to give the adducts, [IrClL(2-thpy)₂] (L=pyridine (py), tributylphosphine (PBu₃), and dimethyl sulfoxide (dmso)). The new complexes are air-stable; spectral data are given in Table 1 and Fig. 1.

The infrared spectrum of free H(2-thpy) shows bands at 844, 856, and 894 cm⁻¹ characteristic of 2-substituted thiophene in the region of C–H out-of-plane deformation vibrations.⁵⁾ These bands are replaced by a single band at 884 cm⁻¹ in the spectrum of [{IrCl(2-thpy)₂}₂], indicating that the thiophene ring is 2,3-disubstituted.³⁾ The 60 MHz ¹H NMR spectrum of free H(2-thpy) is complicated. Only one signal of 6-H(py)⁶⁾ is distinctly separated from the main signals, lying at δ =8.61 ppm (as a doublet of triplets, J=5.0; 1.3 Hz). The ¹H NMR spectrum of [{IrCl(2-thpy)₂}₂] is shown in Fig. 1 and Table 1 together with assignments. A sharp doublet with a relative intensity 1 H at 5.94

ppm becomes a singlet upon irradiation of a sharp doublet with an intensity 1 H at 7.17 ppm (J=4.9 Hz) and vice versa. The two doublets are assigned to thiophene ring protons. Each of the signals assigned to 5-H(py) and 6-H(py) has an intensity 1 H and the relative intensity of the multiplet assigned to 3-H(py) and 4-H(py) amounts to 2 H. The results, together with the infrared spectra and the evidence for cyclopalladated cycloplatinated 2-thpy complexes³ suggest that 3-H(th) of H(2-thpy) is lost and that the two 2-thpy ligands of [{IrCl(2-thpy)₂}₂] are equivalent. Significant shielding seems to be operative for 4-H(th). This can be explained in terms of Structure I, 7) where 4-H(th) is nearly above the pyridine ring of the other 2-thpy ligand, thus being

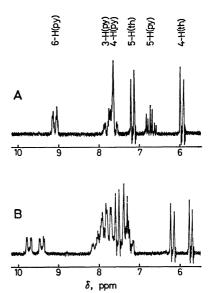


Fig. 1. 60 MHz ¹H NMR spectra of [IrCl(2-thpy)₂]₂ in CD₂Cl₂ (A) and [IrCl(dmso)(2-thpy)₂] in DMSOd₆ (B).

Table 1. Infrared and ¹H NMR spectra of the complexes

C 1	ν(Ir-Cl) ^{a)}	Solvent	$\delta/{ m ppm^{b)}}$		
Complex			4-H(th)	6-H(py)	
$[IrCl(2-thpy)_2]_2$	245, 224	$\mathrm{CD_2Cl_2}$	5.94d(4.9)	9.07d (5.8)	
$[IrCl(dmso)(2-thpy)_2]$	255	dmso-d	5.77d(4.8)	9.45d (5.6)	
- , , , , - , , , - , , , - , , - , , - , , - ,			6.23d(4.8)	9.77d (5.6)	
$[IrCl(py)(2-thpy)_2]$	243	$\mathrm{CDCl_3}$	6.12d(4.6)	7.94d (5.6)	
			6.24d(4.6)	9.72d (5.6)	
$[IrCl(PBu_3)(2-thpy)_2]$	253	CDCl_3	5.92dd(4.8; 1.5)	8.78d (5.6)	
2 (2.7.22		•	6.27d(4.8)	9.77d(5.6)	
$[IrBr(PBu_3)(2-thpy)_2]$		$CDCl_3$	5.93dd(4.8; 1.5)	8.76d (5.6)	
		-	6.22d(4.8)	9.91d(5.6)	
$[IrI(PBu_3)(2-thpy)_2]$		$CDCl_3$	5.96dd(4.8; 1.5)	8.75d(5.6)	
- · · · · · · · · · · · · · · · · · · ·		Ū	6.14d(4.8)	10.11d(5.6)	

a) Nujol mulls, cm⁻¹. b) Values in parentheses are coupling constants in Hz.

shielded by the aromatic ring current. Structure I is in line with low $\nu(\text{Ir-Cl})$ frequency, since the chloride ligand is coordinated *trans* to a σ -carbon donor with strong *trans*-influence.

TABLE 2. YIELDS, MELTING POINTS AND ANALYTICAL RESULTS

Complex	Yield %	Mp °C	Found (Calcd), %			
			c	Н	N	
[IrCl(2-thpy) ₂] ₂	31	310 (dec)*)	39.33 (39.45)	2.23(2.21)	4.80(5.11)	
[IrCl(py)(2-thpy) ₂]	73	300 (dec)	44.07 (44.05)	2.52(2.73)	6.60(6.70)	
[IrCl(dmso)(2-thpy) ₂]	75	240 (dec)	38.34 (38.36)	2.91(2.90)	4.20 (4.27)	
[IrCl(PBu ₃)(2-thpy) ₂]	77	122-124	48.60 (48.02)	5.30 (5.24)	3.73(3.73)	
[IrBr(PBu ₃)(2-thpy) ₂]	64	203205	45.65 (45.33)	4.88(4.95)	3.20(3.52)	
[IrI(PBu ₃)(2-thpy) ₂]	83	230 (dec)	43.01 (42.80)	4.62 (4.67)	3.03(3.33)	

Structure II is proposed for the complexes [IrClL(2thpy), on the basis of the following spectral data. In the ¹H NMR spectra of the complexes, the signal due to 4-H(th) splits into two doublets with a relative intensity 1 H (Fig. 1), that due to 6-H(py) also splitting into two apparent doublets with an intensity 1 H. The remaining protons give a complicated pattern with an intensity 8 H. Thus the two 2-thpy ligands are not equivalent in $[IrClL(2-thpy)_2]$. In the case of $L=PBu_3$, an additional small splitting (J(P-H)=1.5 Hz) is observed for one of the two doublets of 4-H(th) and the doublet, which shifts hardly upon exchange of halide donors, is assigned to 4-H of the thiophene ring coordinated trans to PBu₃. However, the other downfield doublet shifts to higher field in the order Cl<Br<I, and is assigned to 4-H of the thiophene ring coordinated trans to halide donors.

The separation of two doublets of 6-H(py) depends upon L. In the case of L=py, one of the two doublets is significantly shielded. This might be caused by anisotropic shielding by a pyridine (L) donor, since its least sterically hindered coordination brings the pyridine (L) ring nearly perpendicular to one of the chelated 2-thpy ligands. One 6-H(py) lies, therefore, nearly above the pyridine (L) ring. The other 6-H(py) is directed toward a Cl donor and the chemical shifts are almost independent of L.

The chemical shifts of 6-H(py) of [IrX(PBu₃)(2-thpy)₂](X=Cl, Br, I) are of interest. The positions of higher field doublets are nearly constant irrespective of the nature of halide donors, while the lower field doublets shift to a lower field in the order Cl<Br<I with increasing van der Waals radius of halide ions. The same trend was reported for square-planar

palladium(II) complexes of pyridine derivatives,⁸⁾ the origin being interpreted as the result of spatial crowding between 6-H(py) and a halide ligand. The low v(Ir-Cl) frequencies are in line with Structure II. The band at 1109 cm^{-1} of [IrCl(dmso)(2-thpy)₂] is assigned to v(S=O), suggesting S-coordination of dmso.

The ligand H(2-thpy) behaves in a similar way to that of the corresponding benzene derivatives such as 2-phenylpyridine and benzo[h]quinoline.⁷⁾ H(2-thpy) has also been cyclorhodated to give [{RhCl(2-thpy)₂}₂] like 2-phenylpyridine and benzo[h]quinoline.⁹⁾ Structures I and II proposed above correspond to those of the complexes of these benzene derivatives.

Experimental

Measurements. Measurements were carried out by the methods reported. 10

Synthesis of the Complexes. Yields, melting points and analytical results are given in Table 2.

 $[\{IrCl(2-thpy)_2\}_2]$: A mixture of 3 mmol of hydrated iridium(III) chloride with 9 mmol of H(2-thpy) in 50 cm³ of 2-methoxyethanol was refluxed for 6 h to give a brown powder. The product was washed with ethanol, dried in air, and dissolved in dichloromethane. Addition of hexane to the filtered, concentrated dichloromethane solution gave an orange powder.

 $[IrClL(2-thpy)_2](L=py \ or \ PBu_3)$: To a solution of [{IrCl-(2-thpy₂}₂] in dichloromethane was added a stoichiometric amount of PBu₃ or 3-fold excess of pyridine. The mixture was stirred on a hot plate for 1 h. Hexane was added to the concentrated dichloromethane solution to precipitate a yellow orange product.

 $[IrCl(dmso)(2-thpy)_2]$: One-fifth mmol of $[\{IrCl(2-thpy)_2\}_2]$ was dissolved in 1 cm³ of dimethyl sulfoxide on a steam bath. To the solution was added 20 cm³ of ethanol to precipitate an orange yellow product.

 $[IrX(PBu_3)(2-thpy)_2](X=Br \ or \ I)$: To a solution of one-fourth mmol of $[IrCl(PBu_3)(2-thpy)_2]$ in a mixture of 20 cm³ of dichloromethane and 10 cm³ of ethanol was added 1 mmol of lithium bromide or lithium iodide. The mixture was warmed on a hot plate for 3 h and concentrated to a small volume to give bromide or iodide complex.

References

- 1) M. I. Bruce, Angew. Chem., 89, 75 (1977).
- 2) J. Dehand and M. Pfeffer, Coord. Chem. Rev., 18, 327 (1976).
- 3) T. J. Giordano and F. G. Rasmussen, *Inorg. Chem.*, 14, 1628 (1975).
 - 4) M. Nonoyama, Inorg. Nucl. Chem. Lett., 14, 337 (1978).
- 5) J. J. Peron, P. Saumagne, and J. M. Lebas, *Spectrochim. Acta, Part A*, **26**, 1651 (1970).
- 6) 4-H of a thiophene ring and 6-H of a pyridine ring of 2-(2-thienyl)pyridine are, abbreviated to 4-H(th) and 6-H-(py), respectively. Similar abbreviations are used in this paper.
- 7) M. Nonoyama, Bull. Chem. Soc. Jpn., 47, 767 (1974); J. Organomet. Chem., 82, 271 (1974).
- 8) M. Nonoyama, K. Sato, and K. Yamasaki, Nippon Kagaku Kaishi, 1974, 696.
- 9) Found: C, 46.87; H, 2.67; N, 6.40%. Calcd for RhClC₁₈H₁₂N₂S₂: C, 47.12; H, 2.64; N, 6.11%.
- 10) M. Nonoyama and C. Hayata, Transition Met. Chem., 3, 366 (1978).